Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Math Biosci Eng ; 20(3): 4816-4837, 2023 01 04.
Article in English | MEDLINE | ID: covidwho-2201228

ABSTRACT

This paper is devoted to investigating the impact of vaccination on mitigating COVID-19 outbreaks. In this work, we propose a compartmental epidemic ordinary differential equation model, which extends the previous so-called SEIRD model [1,2,3,4] by incorporating the birth and death of the population, disease-induced mortality and waning immunity, and adding a vaccinated compartment to account for vaccination. Firstly, we perform a mathematical analysis for this model in a special case where the disease transmission is homogeneous and vaccination program is periodic in time. In particular, we define the basic reproduction number $ \mathcal{R}_0 $ for this system and establish a threshold type of result on the global dynamics in terms of $ \mathcal{R}_0 $. Secondly, we fit our model into multiple COVID-19 waves in four locations including Hong Kong, Singapore, Japan, and South Korea and then forecast the trend of COVID-19 by the end of 2022. Finally, we study the effects of vaccination again the ongoing pandemic by numerically computing the basic reproduction number $ \mathcal{R}_0 $ under different vaccination programs. Our findings indicate that the fourth dose among the high-risk group is likely needed by the end of the year.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Models, Theoretical , Vaccination , Pandemics/prevention & control
2.
Infect Dis Model ; 7(2): 25-32, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1796731

ABSTRACT

Objectives: Serological surveys were used to infer the infection attack rate in different populations. The sensitivity of the testing assay, Abbott, drops fast over time since infection which makes the serological data difficult to interpret. In this work, we aim to solve this issue. Methods: We collect longitudinal serological data of Abbott to construct a sensitive decay function. We use the reported COVID-19 deaths to infer the infections, and use the decay function to simulate the seroprevalence and match to the reported seroprevalence in 12 Indian cities. Results: Our model simulated seroprevalence matchs the reported seroprevalence in most of the 12 Indian cities. We obtain reasonable infection attack rate and infection fatality rate for most of the 12 Indian cities. Conclusions: Using both reported COVID-19 deaths data and serological survey data, we infer the infection attack rate and infection fatality rate with increased confidence.

SELECTION OF CITATIONS
SEARCH DETAIL